Jack polynomials in superspace
نویسندگان
چکیده
This work initiates the study of orthogonal symmetric polynomials in superspace. Here we present two approaches leading to a family of orthogonal polynomials in superspace that generalize the Jack polynomials. The first approach relies on previous work by the authors in which eigenfunctions of the supersymmetric extension of the trigonometric Calogero-Moser-Sutherland Hamiltonian were constructed. Orthogonal eigenfunctions are now obtained by diagonalizing the first nontrivial element of a bosonic tower of commuting conserved charges not containing this Hamiltonian. Quite remarkably, the expansion coefficients of these orthogonal eigenfunctions in the supermonomial basis are stable with respect to the number of variables. The second and more direct approach amounts to symmetrize products of non-symmetric Jack polynomials with monomials in the fermionic variables. This time, the orthogonality is inherited from the orthogonality of the non-symmetric Jack polynomials, and the value of the norm is given explicitly. ∗[email protected] †[email protected] ‡[email protected]
منابع مشابه
ar X iv : m at h - ph / 0 50 90 39 v 1 1 9 Se p 20 05 JACK POLYNOMIALS IN SUPERSPACE : COMBINATORIAL ORTHOGONALITY
Jack polynomials in superspace, orthogonal with respect to a " combinatorial " scalar product, are constructed. They are shown to coincide with the Jack polynomials in superspace, orthogonal with respect to a " physical " scalar product, introduced in [5] as eigenfunctions of a supersymmetric quantum mechanical many-body problem. The results of this article rely on generalizing (to include an e...
متن کاملOrthogonality of Jack Polynomials in Superspace
Jack polynomials in superspace, orthogonal with respect to a “combinatorial” scalar product, are constructed. They are shown to coincide with the Jack polynomials in superspace, orthogonal with respect to an “analytical” scalar product, introduced in [5] as eigenfunctions of a supersymmetric quantum mechanical many-body problem. The results of this article rely on generalizing (to include an ex...
متن کاملA Normalization Formula for the Jack Polynomials in Superspace and an Identity on Partitions
We prove a conjecture of [3] giving a closed form formula for the norm of the Jack polynomials in superspace with respect to a certain scalar product. The proof is mainly combinatorial and relies on the explicit expression in terms of admissible tableaux of the non-symmetric Jack polynomials. In the final step of the proof appears an identity on weighted sums of partitions that we demonstrate u...
متن کامل1 5 D ec 2 00 4 SYMMETRIC FUNCTIONS IN SUPERSPACE
We construct a generalization of the theory of symmetric functions involving functions of commuting and anticommuting (Grassmannian) variables. These new functions , called symmetric functions in superspace, are invariant under the diagonal action of the symmetric group acting on the sets of commuting and anticommuting variables. We first obtain superspace analogues of a number of standard obje...
متن کاملExplicit formulas for the generalized Hermite polynomials in superspace
We provide explicit formulas for the orthogonal eigenfunctions of the supersymmetric extension of the rational Calogero-Moser-Sutherlandmodel with harmonic confinement, i.e., the generalized Hermite (or Hi-Jack) polynomials in superspace. The construction relies on the triangular action of the Hamiltonian on the supermonomial basis. This translates into determinantal expressions for the Hamilto...
متن کامل